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Abstract

We consider multiple state optimal design problems, aiming to find the best ar-
rangement of two given isotropic materials, such that the obtained body has some
optimal properties regarding m different right-hand sides. Using the homogenization
method as the relaxation tool, the standard variational techniques lead to necessary
conditions of optimality. These conditions are the basis for the optimality criteria
method, a commonly used numerical (iterative) method for optimal design problems.
In Vrdoljak (2010), one variant of this method is presented, which is suitable for the
energy maximization problems. We study another variant of the method, which works
well for energy minimization problems. The explicit calculation of the design update
is presented, which makes the implementation simple and similar to the case of single
state equation. The method is tested on examples, showing that exact solutions are
well approximated with the obtained numerical solutions.
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1 Introduction

In optimal design problems the goal is to find the best arrangement of given materials within
the body which optimizes its properties with respect to some optimality criteria. We consider
such problems in the context of the stationary diffusion equation{

−div (A∇u) = f
u ∈ H1

0(Ω)
. (1)

In this case, function u represents the temperature (or the potential in electrostatics)
uniquely determined by external heat (or electric charge) density f ∈ H−1(Ω), while A ∈
L∞(Ω; Md(R)) represents thermal (or electrical) conductivity of a material. We are dealing
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with multiple state optimal design problems, where one can have several different regimes
effecting on the observed body, which leads to several state equations.

Here, the body is represented by a bounded and open set Ω ⊂ Rd and we assume that it
is filled by two isotropic materials with conductivities α and β (0 < α < β).

The conductivity matrix is then given by

A = χαI + (1− χ)βI,

where χ ∈ L∞(Ω; {0, 1}) is a characteristic function of the part of the domain Ω occupied
by the first material. If we assume that the volume of the first material is prescribed:∫

Ω
χ(x) dx = qα, where 0 < qα < |Ω| is given, then the classical multiple state optimal

design problem consists of minimizing the functional∫
Ω

(χ(x)gα(x, u) + (1− χ(x))gβ(x, u)) dx , (2)

over the set of all measurable characteristic functions on Ω satisfying the volume constraint.
Here, gα and gβ are given, while u = (u1, . . . , um) denotes the state function: for each
i ∈ {1, . . . ,m}, temperature ui is the solution of (1) with given right-hand side fi and
A = χαI + (1− χ)βI. The volume constraint of the first material is handled by introducing
Lagrange multiplier l, leading to an unconstrained minimization problem J(χ) =

∫
Ω

(χ(x)gα(x, u) + (1− χ(x))gβ(x, u)) dx + l

∫
Ω

χ(x) dx −→ min

χ ∈ L∞(Ω; {0, 1}).
(3)

The proposed optimal design problem usually does not admit a solution, thus it is natural
to consider an appropriate relaxation of the original problem. Murat and Tartar’s relaxation
by the homogenization method [13] uses a couple (θ,A), called a generalized design referring
to a fine mixture of original materials, where θ ∈ L∞(Ω; [0, 1]) represents a local fraction of
the first material in a mixture, while A is a homogenized conductivity matrix containing
information on how materials are mixed. G-closure problem deals with the question of
characterizing the set K(θ) of all possible homogenized conductivities which can be obtained
with the prescribed local fraction θ. It is solved in case of mixing two isotropic materials
[16, 12]: for given θ ∈ [0, 1], the set K(θ) consists of all symmetric matrices with eigenvalues
λ1, . . . , λd satisfying the inequalities

λ−θ ≤ λj ≤ λ+
θ , j = 1, . . . , d , (4)

d∑
j=1

1

λj − α
≤ 1

λ−θ − α
+

d− 1

λ+
θ − α

, (5)

d∑
j=1

1

β − λj
≤ 1

β − λ−θ
+

d− 1

β − λ+
θ

, (6)

where

λ−θ =
(
θ
α

+ 1−θ
β

)−1

and λ+
θ = θα + (1 − θ)β. Inequalities λ−θ ≤ λj can be omitted from

the above description of the set K(θ), as they follow from other inequalities. The set of all
such d-tuples (λ1, . . . , λd) is denoted by Λ(α, β; θ).
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Finally, the relaxation of problem (3) reads J(θ,A) =

∫
Ω

(θ(x)gα(x, u) + (1− θ(x))gβ(x, u)) dx + l

∫
Ω

θ(x) dx −→ min

(θ,A) ∈ A = {(θ,A) ∈ L∞(Ω; [0, 1]×Md(R)) : A(x) ∈ K(θ(x)) a. e.x ∈ Ω}
(7)

and it is a true relaxation of the original problem, under suitable conditions on gα and gβ.
More information about homogenization theory and applications in optimal design can be
found in [1, 13, 14, 18, 19].

Recently, problem (7) was solved analytically [5, 6, 21] for some simple domains like
ball or annulus and a functional corresponding to a conic sum of energies obtained for each
state equation where gα = gβ =

∑m
i=1 µifiui (for single state problems, see also [7, 13]). For

more complicated domains (or functionals), it is quite unlikely to find an analytic solution
[10], which imposes a need for various numerical methods. One of them is optimality criteria
method, an iterative method based on optimality conditions of the relaxed formulation, which
produces good results in shape optimization [4, 15]. For the case of a single state equation, the
method is described in [1]. Actually, two variants of the method are introduced: already in
[13] it was noticed that in the case of energy functional, two different approaches to optimality
conditions are needed; one for the minimization and the other for the maximization of energy.

Regarding multiple state problems, in [20], an optimality criteria method is introduced,
based on the optimality conditions derived in [1]. It appears that this method works properly
for maximization of a conic sum of energies, but fails for the minimization of the same
functional. In this work, we present another variant of the optimality criteria method which
is suitable for minimization of a conic sum of energies.

The paper is organized as follows: in the second section we derive the necessary condition
of optimality for the relaxed minimization problem and present calculations essential for the
implementation of the optimality criteria method for the two and three-dimensional cases.
In the last section, an implementation of the optimality criteria method is described and
some numerical results are presented.

2 Optimality criteria method

Let us denote by (θ∗,A∗) a local minimum of the relaxed problem (7) and consider an
admissible smooth path ε 7→ (θε,Aε) ∈ A given by

(θε,Aε) = (θ∗,A∗) + ε(δθ, δA) + o(ε), lim
ε↘0

‖o(ε)‖L∞

ε
= 0.

Then, for any admissible variation (δθ, δA) = d
dε

(θε,Aε) �ε=0+ , the first order variation of J
is given by ([1, Sect. 3.2.3])

δJ =

∫
Ω

(gα(x, u(x))− gβ(x, u(x)) + l) δθ(x) dx−
∫

Ω

m∑
i=1

δA(x)∇ui(x) · ∇pi(x) dx, (8)

where the adjoint states p1, . . . , pm are unique solutions of adjoint boundary value problems −div (A∇pi) = θ
∂gα
∂ui

(·, u) + (1− θ)∂gβ
∂ui

(·, u)

pi ∈ H1
0(Ω)

i = 1, . . . ,m . (9)
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The necessary condition of optimality states that δJ ≥ 0, for any admissible variation
(δθ, δA) of the optimal design (θ∗,A∗). The main difficulty in analysing this optimality
condition is that variations in θ and A are not independent. Therefore, we use an analogous
technique to that presented in [13, 17, 18, 1]. As the first step let us consider variations only
in A, taking δθ to be 0. As noticed in [1, Remark 2.2.16], the condition A ∈ K(θ) can be
equivalently expressed as A−1 ∈ K̃(θ), where K̃(θ) is the set of all matrices with eigenvalues
νj = 1

λj
(λj being the eigenvalues of A) satisfying

ν+
θ ≤ νj ≤ ν−θ , j = 1, . . . , d , (10)

d∑
j=1

1

α−1 − νj
≤ 1

α−1 − ν−θ
+

d− 1

α−1 − ν+
θ

, (11)

d∑
j=1

1

νj − β−1
≤ 1

ν−θ − β−1
+

d− 1

ν+
θ − β−1

, (12)

for ν+
θ = 1

λ+θ
and ν−θ = 1

λ−θ
. The set of all (ν1, . . . , νd) satisfying (10)-(12) is denoted by

V(α, β; θ). As before, inequalities νj ≤ ν−θ can be omitted. Due to the convexity of K(θ∗), it
is natural to take a segment in K(θ∗) as the admissible path, which leads to the variant of
optimality criteria method that appears suitable for maximization problems [1, 20]. Here,
we choose another path: since K̃(θ∗) is also convex, we can take the admissible smooth path
Aε = (εA−1 + (1 − ε)A∗−1)−1, for some A ∈ K(θ∗), which represents a segment in K̃(θ∗).
Then the admissible variation δA is of the form A∗(A∗−1−A−1)A∗, and by (8), the necessary
condition of optimality reads

m∑
i=1

A−1σ∗i · τ ∗i ≥
m∑
i=1

A∗−1σ∗i · τ ∗i ,

almost everywhere on Ω, where σ∗i = A∗∇u∗i and τ ∗i = A∗∇p∗i . Therefore, A∗ is a solution
of the minimization problem 

m∑
i=1

A−1σ∗i · τ ∗i → min

A ∈ K(θ∗),

(13)

which is a constrained minimization of a linear function. By introducing a matrix function
N∗ = Sym

∑m
i=1 σ

∗
i ⊗ τ ∗i , we have

∑m
i=1 A−1σ∗i · τ ∗i = A−1 : N∗. Here, the symbol ⊗ denotes

the tensor product of two vectors, while : stands for the matrix inner product. By the
classical von Neumann result [11], the optimal A for the above minimization problem is
simultaneously diagonalizable with N∗ and thus the problem (13) reduces to

d∑
j=1

νjη
∗
j −→ min

νj ∈ V(α, β; θ∗), j = 1, . . . , d ,

(14)

where η∗1 ≥ η∗2 ≥ . . . ≥ η∗d are eigenvalues of the symmetric matrix N∗.
Now we take into account variations in θ and consider an admissible smooth path ε 7→

(θε,Aε) such that almost everywhere on Ω

(Aε)−1 : N∗ = g(θε,N∗),
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where function g : [0, 1]× Symd → R is defined by

g(θ,N) = min
A∈K(θ)

(A−1 : N).

Since θ 7→ g(θ,N) is differentiable, as we shall see later, using variations (δθ, δA) generated
by this smooth path, the necessary condition of optimality leads us to the following result.

Theorem 1 Let (θ∗,A∗) be a local minimizer for the relaxation problem (7) with corre-
sponding states u∗i and adjoint states p∗i . We introduce symmetric matrix

N∗ = Sym
m∑
i=1

σ∗i ⊗ τ ∗i ,

for σ∗i = A∗∇u∗i , τ ∗i = A∗∇p∗i , and function

R∗(x) := gα(x, u∗(x))− gβ(x, u∗(x)) + l +
∂g

∂θ
(θ∗(x),N∗(x)) , a.e. x ∈ Ω .

Then the optimal θ∗ satisfies (almost everywhere on Ω)

θ∗(x) = 0 =⇒ R∗(x) ≥ 0 ,

θ∗(x) = 1 =⇒ R∗(x) ≤ 0 ,

0 < θ∗(x) < 1 =⇒ R∗(x) = 0,

or equivalently

R∗(x) > 0 =⇒ θ∗(x) = 0 ,

R∗(x) < 0 =⇒ θ∗(x) = 1.

Proof. The theorem can be proved analogously as Theorem 3.2.14. in [1]. �

For single state optimal design problems, function g attains a minimum in a simple
laminate which is easily expressed in terms of σ∗ and τ ∗. This fact makes a calculation of
the partial derivative ∂g

∂θ
straightforward. Furthermore, this calculation enables an explicit

update of the design variables (θk,Ak) in the optimality criteria method. Let us describe a
strict analogue of this method applied to multiple state problems.

Algorithm 1 Take some initial θ0 and A0. For k from 0 to N:

1. Calculate uki , i = 1, . . . ,m, the solution of{
−div (Ak∇ui) = fi
ui ∈ H1

0(Ω)
.

2. Calculate pki , i = 1, . . . ,m, the solution of −div (Ak∇pi) = θk
∂gα
∂ui

(·, uk) + (1− θk)∂gβ
∂ui

(·, uk)
pi ∈ H1

0(Ω), uk = (uk1, . . . , u
k
m)

and define σki := Ak∇uki , τ ki := Ak∇uki and Nk := Sym
m∑
i=1

(σki ⊗ τ ki ).
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3. For x ∈ Ω let θk+1(x) ∈ [0, 1] be a zero of the function

θ 7→ Rk(θ,x) := gα(x, uk(x))− gβ(x, uk(x)) + l +
∂g

∂θ
(θ,Nk(x)) , (15)

and if a zero doesn’t exist, take 0 (or 1) if the function is positive (or negative) on
[0, 1].

4. Let Ak+1(x) be the minimizer in the definition of g(θk+1(x),Nk(x)).

In the rest of the paper, we shall present explicit formulae for the partial derivative ∂g
∂θ

for the general (multi-state) case. As mentioned in the Introduction, the first variant of
the optimality criteria method is presented in [20], but it does not converge for examples
presented in Section 3. On the other hand, that variant behaves well for the question
of maximization of the same functionals instead of minimization. This kind of behaviour
is expected for a class of self-adjoint problems, since already, the single state self-adjoint
problems exhibit a similar effect [13, 1].

Let us first consider the two-dimensional case. As commented, the minimization over
K(θ) in the definition of function g can be expressed equivalently by minimization over
eigenvalues:

g(θ,N) = min
ν∈V(α,β;θ)

d∑
j=1

νjηj ,

where ηj are the eigenvalues of the symmetric matrix N.
In the two-dimensional case one can easily show that the set V(α, β; θ) equals to the set

Λ
(

1
β
, 1
α

; 1− θ
)

. This remark can be used to calculate g and its partial derivative over θ on

the basis of [1, Lemma 3.2.17], as presented in the next theorem.

Theorem 2 For the case d = 2, for given θ ∈ [0, 1] and a symmetric matrix N with eigen-
values η1 ≥ η2, we have

A. If η2 > 0 and θA :=

(
α

√
η1√
η2

− β
)

1

α− β
, then

∂g

∂θ
(θ,N) =


1

β

(
β2 − α2

)( √
η1 +

√
η2

θ(α− β) + β + α

)2

, θ < θA

(β − α) η1

(θ(α− β) + β)2 + η2

(
1

α
− 1

β

)
, θ ≥ θA

.

B. If η1 < 0 and θB :=

(√
−η1√
−η2

− 1

)
β

α− β
, then

∂g

∂θ
(θ,N) =


− 1

α

(
β2 − α2

)(√−η1 +
√
−η2

θ(α− β) + 2β

)2

, θ > θB

(β − α) η1

(θ(α− β) + β)2 + η2

(
1

α
− 1

β

)
, θ ≤ θB

.

C. If η1 ≥ 0 and η2 ≤ 0, then

∂g

∂θ
(θ,N) =

(β − α) η1

(θ(α− β) + β)2 + η2

(
1

α
− 1

β

)
.
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Proof. In the proof we emphasize parameters α and β in the set K(θ) by denoting it by
K(α, β; θ), for given θ ∈ [0, 1]. For dimension d = 2, condition A ∈ K(α, β; θ) can be

equivalently expressed as A−1 ∈ K
(

1
β
, 1
α

; 1− θ
)

. Now it follows

g(θ, N) = min
A∈K(α,β; θ)

A−1 : N = − max
A−1∈K( 1

β
, 1
α

; 1−θ)
A−1 : (−N) = −f 1/α

1/β (1− θ, −N),

where, for 0 < γ < δ, function f δγ : [0, 1]× Symd −→ R is defined as in [1, Theorem 3.2.14],
i. e.

f δγ (θ,M) = max
A∈K(γ, δ; θ)

A : M .

Furthermore,

∂g

∂θ
(θ, N) =

∂f
1/α
1/β

∂θ
(1− θ, −N).

Therefore, one can use the formula for fβα given in [1, Lemma 3.2.17] to obtain ∂g
∂θ

. �

In this case (d = 2), the function θ 7→ Rk(θ,x) introduced in (15) is monotone for almost
every x ∈ Ω, so its zero point (if it exists) is unique. Moreover, by formulae presented in
Theorem 2, the zero point can be calculated explicitly, as a zero of a quadratic equation. For
example, if the eigenvalues of matrix Nk fits the case A above, then the function θ 7→ Rk(θ,x)
is strictly increasing. Therefore, one should simply check signs of Rk(θ,x) for θ ∈ {0, 1} (and
θ = θA, if 0 < θA < 1) to locate the zero point (if it exists), and solve the corresponding
quadratic equation for θ.

In the three-dimensional case, the situation is more tedious, and we shall begin by solving
the minimization problem (14).

Theorem 3 (d = 3) Let 0 < θ < 1 and η1 ≥ η2 ≥ η3 be given. Then the minimization
problem 

ν1η1 + ν2η2 + ν3η3 −→ min

(ν1, ν2, ν3) ∈ V(α, β; θ),
(16)

has a solution ν∗ as follows:

I. If

(
η3 < 0 and η2 ≥ η3

(
1−αν−θ
1−αν+θ

)2
)

or

(
η3 ≥ 0 and η2 ≥ η3

(
βν−θ −1

βν+θ −1

)2
)

, then

ν∗ =
(
ν+
θ , ν

+
θ , ν

−
θ

)
is optimal.

II. Let η2 < η3

(
1−αν−θ
1−αν+θ

)2

(this is possible only if η2 < 0).

1. If η1 ≥ 0 or else if
√
−η2 +

√
−η3 ≥

√
−η1

(
1 +

1−αν+θ
1−αν−θ

)
then ν∗ =

(
ν+
θ , ν2, ν3

)
is

optimal, where

νi =
1

α
− 1√
−ηi

√
−η2 +

√
−η3

c1(θ)
, i = 2, 3; (17)

with c1(θ) = 1
α−1−ν−θ

+ 1
α−1−ν+θ

.
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2. Otherwise, if η1 < 0 and
√
−η2+

√
−η3 <

√
−η1

(
1 +

1−αν+θ
1−αν−θ

)
then ν∗ = (ν1, ν2, ν3)

is optimal, where

νi =
1

α
− 1√
−ηi

√
−η1 +

√
−η2 +

√
−η3

c2(θ)
, i = 1, 2, 3; (18)

with c2(θ) = 1
α−1−ν−θ

+ 2
α−1−ν+θ

.

III. Let η2 < η3

(
βν−θ −1

βν+θ −1

)2

(this is possible only if η3 > 0).

1. If
√
η2 +

√
η3 ≤

√
η1

(
1 +

βν+θ −1

βν−θ −1

)
then ν∗ =

(
ν+
θ , ν2, ν3

)
is optimal, where

νi =
1

β
+

1
√
ηi

√
η2 +

√
η3

d1(θ)
, i = 2, 3; (19)

with d1(θ) = 1
ν−θ −β−1 + 1

ν+θ −β−1 .

2. If
√
η2 +

√
η3 >

√
η1

(
1 +

βν+θ −1

βν−θ −1

)
then ν∗ = (ν1, ν2, ν3) is optimal, where

νi =
1

β
+

1
√
ηi

√
η1 +

√
η2 +

√
η3

d2(θ)
, i = 1, 2, 3; (20)

with d2(θ) = 1
ν−θ −β−1 + 2

ν+θ −β−1 .

Proof. Note that due to the symmetry of the set V(α, β; θ) in ν1, ν2, ν3, we can conclude
that a minimum point satisfies ν+

θ ≤ ν1 ≤ ν2 ≤ ν3. Moreover, by observing that we are
minimizing a linear function over a convex set, the optimal point belongs to the boundary
of the set V(α, β; θ) and conversely, every boundary point of V(α, β; θ) can be obtained
as a solution of (16) for some η1, η2 and η3. In addition, if η1 ≥ 0 and η2 = η3 = 0, the
problem (16) has a non-unique solution, one of them being simple laminate ν∗ = (ν+

θ , ν
+
θ , ν

−
θ ).

Otherwise, there is a unique minimizer which we find by solving the Karush-Kuhn-Tucker
(KKT) system. We already eliminated flat parts of the boundary of the set V(α, β; θ) (non-
uniqueness of the solution appears here), so we have to analyze the rest of the boundary
consisting precisely of: simple laminates, second and third order sequential laminates with
matrix material α, and second and third order sequential laminates with matrix material β.
These five cases correspond exactly to cases I, II.1, II.2, III.1, and III.2 of Theorem 3.

Here we only prove part II.1 of the theorem, while others follow similarly. Suppose that
the minimizer ν∗ = (ν1, ν2, ν3) belongs to the part of boundary of V(α, β; θ) corresponding
to second order sequential laminates with matrix material α, described by

ν1 = ν+
θ , (21)

ν2, ν3 > ν+
θ , (22)

3∑
j=1

1

α−1 − νj
=

1

α−1 − ν−θ
+

2

α−1 − ν+
θ

, (23)
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3∑
j=1

1

νj − β−1
<

1

ν−θ − β−1
+

2

ν+
θ − β−1

. (24)

We shall derive conditions on η1 , η2 and η3 which ensure that optimal ν∗ belongs to this part
of the boundary, and calculate the optimal ν∗ in terms of η1 , η2 and η3. In this case, the
KKT system reads:

η1 =
−a1

(α−1 − ν1)2
+ a3

η2 =
−a1

(α−1 − ν2)2

η3 =
−a1

(α−1 − ν3)2
,

for some nonnegative multipliers a1 and a3. From the argument made at the beginning of
the proof, we conclude a1 > 0, implying that η2, η3 < 0 and

1

α−1 − νi
=

√
−ηi
a1

, i = 2, 3, (25)

which together with (23) gives

√
a1 =

√
−η2 +

√
−η3

c1(θ)
, where c1(θ) =

1

α−1 − ν−θ
+

1

α−1 − ν+
θ

. (26)

Inserting this into (25), one obtains formula (17). It remains to identify under which condi-
tions on η1, η2 and η3, the condition (22) is satisfied, with η1 = −a1

(α−1−ν1)2
+ a3, for a1, a3 ≥ 0.

A simple calculation gives that condition ν+
θ < ν2 is equivalent to

√
−η3 <

√
−η2

1− αν+
θ

1− αν−θ
, (27)

while condition a3 ≥ 0 leads to

η1 +
a1

(α−1 − ν1)2
≥ 0.

The above inequality is trivially satisfied if η1 ≥ 0, while if η1 < 0, then from (26), using
(21), it is equivalent to the inequality

√
−η2 +

√
−η3 ≥

√
−η1

(
1 +

1− αν+
θ

1− αν−θ

)
. (28)

�
Before providing the function g(θ,N) and its derivatives, let us rewrite the statement of

Theorem 3 in a more convenient way for implementation on a computer.

Corollary 1 (d = 3) Given η1 ≥ η2 ≥ η3 and 0 < θ < 1 one can calculate the minimum
point ν∗ = (ν1, ν2, ν3) for (16) in the following way:

If η3 = 0, then the optimal point is ν∗ = (ν+
θ , ν

+
θ , ν

−
θ ).
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Else if η3 > 0, then calculate ν1 by formula (20).

If ν+
θ < ν1, then both ν2 and ν3 are given by (20).

Else, calculate ν2 by formula (19).

If ν+
θ < ν2, then ν1 = ν+

θ and ν3 is given by (19).

Else ν∗ = (ν+
θ , ν

+
θ , ν

−
θ ).

Else (η3 < 0)

If η1 ≥ 0, then

if η2 ≥ η3

(
1−αν−θ
1−αν+θ

)2

then ν∗ = (ν+
θ , ν

+
θ , ν

−
θ ).

Else ν∗ = (ν+
θ , ν2, ν3), where ν2 and ν3 are given by (17).

Else (η1 < 0) calculate ν1 by formula (18).

If ν+
θ < ν1, then both ν2 and ν3 are given by (18).

Else, calculate ν2 by formula (17).

If ν+
θ < ν2,, then ν1 = ν+

θ and ν3 is given by (17).

Else ν∗ = (ν+
θ , ν

+
θ , ν

−
θ ).

Once the optimal solution ν∗ = (ν1, ν2, ν3) for (16) is determined, one can easily calculate
the function g(θ,N) = ν1η1 + ν2η2 + ν3η3, as well as its partial derivative over θ. Partial
derivatives of the function g are given below.

Theorem 4 For d = 3, given θ ∈ [0, 1] and matrix N with eigenvalues η1 ≥ η2 ≥ η3, we
have

A. If η3 = 0 then
∂g

∂θ
(θ,N) =

β − α
(θα + (1− θ)β)2

(η1 + η2).

B. If η3 > 0 and additionally
√
η2 +

√
η3 −

√
η1 > 0, it holds that

∂g

∂θ
(θ,N) =



(β − α)(α + 2β)

β

( √
η1 +

√
η2 +

√
η3

2θ(α− β) + α + 2β

)2

, θ < θB1 ,

β2 − α2

β

( √
η2 +

√
η3

θ(α− β) + α + β

)2

+
(β − α) η1

(θα + (1− θ)β)2
, θB1 ≤ θ < θB2 ,

(β − α)η3

αβ
+

β − α
(θα + (1− θ)β)2

(η1 + η2) , θ ≥ θB2 ,

where θB1 = 1−
α(2
√
η1 −

√
η2 −

√
η3)

(β − α)(
√
η2 +

√
η3 −

√
η1)

and θB2 = 1−
α(
√
η2 −

√
η3)

(β − α)
√
η3

.

If
√
η2 +

√
η3 −

√
η1 ≤ 0 then we omit the first case in the above formula.

C. If η3 < 0 then, if η2 and η1 are negative as well, we have

∂g

∂θ
(θ,N) =



−(β − α)(2α + β)

α

(√
−η1 +

√
−η2 +

√
−η3

2θ(α− β) + 3β

)2

, θ > θC1 ,

−β
2 − α2

α

(√
−η2 +

√
−η3

θ(α− β) + 2β

)2

+
(β − α) η1

(θα + (1− θ)β)2
, θC2 < θ ≤ θC1 ,

(β − α)η3

αβ
+

β − α
(θα + (1− θ)β)2

(η1 + η2) , θ ≤ θC2 ,

(29)
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where θC1 =
β(
√
−η2 +

√
−η3 − 2

√
−η1)

(β − α)(
√
−η2 +

√
−η3 −

√
−η1)

and θC2 =
β(
√
−η3 −

√
−η2)

(β − α)
√
−η3

.

If η2 < 0 and η1 ≥ 0 then θC1 is not defined and we can express ∂g
∂θ

(θ,N) by the second
and the third term in (29), omitting the assumption θ ≤ θC1 in the second case.
If η2 ≥ 0 then both θC1 and θC2 are not defined and ∂g

∂θ
is given by the formula in the

third case of (29), for any θ ∈ [0, 1].

Proof. Let us first remark that θB1 ≤ θB2 ≤ 1 and 0 ≤ θC2 ≤ θC1 . We are going to present
only the proof of case C, as other cases can be proved analogously. If η1 < 0 and the optimal
(ν1, ν2, ν3) is given by the formula (18), from

g(θ,N) = η1ν1 + η2ν2 + η3ν3

an easy calculation gives us the formula which corresponds to the first term of the function
∂g
∂θ

in the case C. Here, the condition ν+
θ < ν1 is equivalent to θ > θC1 . If ν1 = ν+

θ (or
equivalently, θ ≤ θC1 ) and ν2 and ν3 are given by (17), then one gets the second formula in
case C. This occurs if ν+

θ < ν2 or equivalently θ > θC2 . Finally, the last term in case C is
easily reconstructed since in this case (ν+

θ , ν
+
θ , ν

−
θ ) is optimal for the minimization problem

in definition of function g. �

It is important to notice that function θ 7→ gα(x, uk(x))− gβ(x, uk(x)) + l+ ∂g
∂θ

(θ,Nk(x))

is continuous in the three-dimensional case, due to the continuity of the function θ 7→ ∂g
∂θ

,
but not necessarily monotone as it was in the two-dimensional case. The possible lack of
monotonicity can occur in case C, when η1 ≥ 0, η2 < 0, and for some choices of α, β, η1, η2,
η3. In this case, one can get two possible zeros of this function on [0, 1], and then we simply
take the smaller one for the next iteration of θ. However, in all examples that we considered,
this situation never actually occurred. In all other cases, the function (15) is monotone and
its zero is explicitly calculated by solving quadratic (or quartic) equation.

3 Numerical examples

In this section, we apply Algorithm 1 on several problems of optimal design. The state and
adjoint equations are solved by the finite element method in deal.II library [3] using Lagrange
elements on a fine mesh, while a design (θ,A) is discretized on a (possibly different) mesh
[8], by piecewise constant elements. Lagrange multiplier l is recalculated at each step in a
way that θk+1 satisfies the volume constraint, which is done quite effectively by the bisection
method. All problems are treated for various volume fractions η := qα

|Ω| of the first phase

(with conductivity α). For the initial design we take constant θ0 = η, while A0 is taken to
be a simple laminate (A0 = diag (λ−θ , λ

+
θ ) if d = 2 or A0 = diag (λ−θ , λ

+
θ , λ

+
θ ) if d = 3). In

all examples we calculate 20 iterations of Algorithm 1, but it appears that optimal design is
well approximated already by the first several iterations.

The first three examples deal with a self-adjoint case, which is addressed already in
[13, 9, 2, 1]. For a numerical point of view and the question of convergence, in the case of
single state problems, see e. g. [1, Section 5.1.3]. Theorems 3.2.30 and 3.2.31 in [1] (see also
[9, 2]) show that the relaxed problem (7) can be expressed as a minimization problem in
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Figure 1: L1 norm E of difference between numerical and exact solution with respect to
mesh refinement j (each refinement introduces four times finer mesh) for various choices of
volume fractions η of the first phase (Subsection 3.1).

terms of complementary energy

inf
(θ,A)∈A

∫
Ω

(
m∑
i=1

fiui + lθ

)
dx = inf

τ ∈ L2(Ω; Rdm)
−div τi = fi

∫
Ω

QF (τ ) ,

where QF (τ ) = min0≤θ≤1(g(θ, τ ττ ) + lθ) is a quasiconvex integrand. More precisely, it
can be understood as a quasiconvex envelope of the integrand which appears in the original
(unrelaxed) problem, which gives another view to its relaxation.

3.1 Two-state problem on a ball.

In the first example we consider two-dimensional problem of weighted energy minimization

J(θ,A) = 2

∫
Ω

f1u1 dx +

∫
Ω

f2u2 dx −→ min,

where Ω ⊆ R2 is a ball B(0, 2), α = 1, β = 2, while u1 and u2 are state functions for{
−div (A∇ui) = fi
ui ∈ H1

0(Ω)
, i = 1, 2, (30)

where we take f1 = χB(0, 1) and f2 ≡ 1 for right-hand sides. This problem is explicitly solved
in [6] so we can compare our numerical solution to the exact one. The comparison is done
with respect to mesh refinement: the original triangulation of the domain is refined up to
8 times, where each refinement introduces four times finer mesh [3]. The L1 error between
the numerical and exact solutions is presented on Figure 1 for various choices of η, and, as
it can be seen, the numerical solution aproximates well the exact one.
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Figure 2: Optimal distribution of materials with volume fraction η = 0.25 of the first phase
– Subsection 3.1.

For η = 0.25, the numerical solution is presented in Figure 2. Let us recall that θ = 0
corresponds to the material with conductivity β, θ = 1 corresponds to the material with
conductivity α, while θ ∈ 〈0, 1〉 corresponds to a fine mixture of the original phases. Con-
vergence history is presented in Figure 3.

3.2 Single state problem on an annulus.

Let us now consider energy minimization problem

J(θ,A) =

∫
Ω

fu dx −→ min,

within an annulus B(0; 1, 2) ⊆ R2, with inner radius 1 and outer radius 2 and the state
equation {

−div (A∇u) = 1
u ∈ H1

0(Ω) .
(31)

Exact solution for this example is calculated in [5], which allows us to compare our numerical
solution to the exact one. The L1 error between the numerical and exact solutions is given
in Figure 4 for various 0 < η < 1 and it is again a decreasing function with respect to mesh
refinement.

Optimal distribution with 50% of the first material is shown in Figure 5, while convergence
histories of the cost functional and the approximation error are illustrated in Figure 6.

We can conclude from both examples that the optimality criteria method proposed in
Section 2 gives a good approximation of the exact solution.

3.3 Two-state problem on a cube.

The third example is the three-dimensional energy minimization problem

J(θ,A) =

∫
Ω

(f1u1 + f2u2) dx −→ min,

13
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Figure 3: Convergence history with volume fraction η = 0.25 of the first phase – Subsection
3.1.
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Figure 4: L1 norm E of difference between numerical and exact solution with respect to
mesh refinement j (each refinement introduces four times finer mesh) for various choices of
volume fraction η of the first phase (Subsection 3.2).
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Figure 5: Optimal distribution of materials with volume fraction η = 0.5 of the first phase
– Subsection 3.2.
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Figure 6: Convergence history with volume fraction η = 0.5 of the first phase – Subsection
3.2.
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(a) Outer look. (b) Intersection of the cube with x = 0
plane.

Figure 7: Numerical solution for Subsection 3.3 with volume fraction η = 0.5 of the first
phase.

with α = 1, β = 2 and two state equations{
−div (A∇ui) = fi
ui ∈ H1

0(Ω)
, i = 1, 2. (32)

We take a cube Ω = [−1, 1]3 as the domain and set function f1 to be zero on the upper
half (z > 0) and 10 on the lower half of the cube, while function f2 to be zero on the left
half (y < 0) and 10 on the right half of the cube. Optimal design of the 20-th iteration
of the Algorithm 1 with volume fraction η = 0.5 of the first material is shown in Figure
7a. Material with greater conductivity is placed at the center of the cube and on the sides,
which can be seen in Figure 7b. Most of the upper left part of the cube is occupied by the
material with smaller conductivity, which is expected because there is no external source
on this part of the domain. Convergence history of the cost functional and the residual are
given in Figure 8.

3.4 Non self-adjoint problem on a cube.

Let us now consider a non self-adjoint two-state minimization problem, where the cost func-
tional is given by

J(θ,A) =

∫
Ω

(u2
1 + u2

2) dx.

We take state equations (32) and domain Ω = [−1, 1]3, with f1 and f2 being similar as in
Subsection 3.3. In this case, the adjoint equations are given by{

−div (A∇pi) = 2ui
pi ∈ H1

0(Ω)
, i = 1, 2. (33)

Optimal distribution of materials with conductivites α = 1 and β = 2 is presented in Figure
9a, while intersection of the domain with the x = 0 plane is given in Figure 9b. Convergence
history is given in Figure 10.
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Figure 8: Convergence history with volume fraction η = 0.5 of the first phase - Subsection
3.3.

(a) Outer look. (b) Intersection of the cube with x = 0
plane.

Figure 9: Numerical solution for Subsection 3.4 with volume fraction η = 0.5 of the first
phase.
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Figure 10: Convergence history with volume fraction η = 0.5 of the first phase - Subsection
3.4.

4 Conclusion

In this paper, we were dealing with multiple state optimal design problems for stationary
diffusion equation. We derived another variant of the optimality criteria method for (two-
and three-dimensional) optimal design problems. Although the method relies on complicated
formulae, it can be implemented quite effectively with almost explicit update formulae for
the design variables. As tested on many examples, this numerical method shows good
convergence properties revealing an optimal design in very few iterations. Moreover, the
convergence seems indifferent to the initial design, and behaves well on mesh refinement.

The method is written for general functionals, and it appears to suit well for problems
of minimizing a conic sum of energies, contrary to the variant presented in [20]. In more
complicated situations, it is expected that a combination of these two variants would be the
right choice.
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Dir. Etudes et Recherches EDF, 57:319–369, Eyrolles, Paris 1985.

[14] F. Murat, L. Tartar, H-convergence, in Séminaire d’Analyse Fonctionnelle et Numérique
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